ENGR 1GK - Introduction to Engineering Design: Go Karts Lecture: Monday-Friday 9am - 4:00 pm | Boelter Hall 1805

Faculty Advisor:Professor Jacob Schmidt, Ph. D.schmidt@seas.ucla.eduEngineering V 5121G

Tentative Course Schedule:

Day	Торіс	Goals		
Week 1				
1	Intro to Class and to Engineering - Syllabus review - Complete Pre-Class Survey - 2D Solidworks (CAD) Tutorial	 Get to know the class and instructors Gain familiarity with 2D sketching Create the fastest rubber band car and race Complete Lab Safety Training Makerspace and SEASnet Lab Tour 		
2	CAD Tutorials + SubsystemIntro-3D Solidworks (CAD) Tutorial-CAD Assemblies-Chassis SubsystemIntroduction-Assemble into teams	 Create 3D models from 2D sketches Create assemblies from pre-made 3D models Create shared Google Drive with teammates and instructors Brainstorm team theme 		
3	 Go-Karts Subsystem Deep Dive Drivetrain Subsystem Chassis Mini Design Review Electronics Subsystem 	 Begin chassis assemblies in Solidworks Implement chassis feedback Brainstorm drivetrain subsystem 		
4	 Go-Karts Subsystems + Manufacturing Tutorial Vehicle Dynamics and Steering Subsystem 3D Printing and Laser Cutting Tutorial Ergonomics and Braking Subsystems Kahoot 	 Brainstorm drivetrain and braking integration Prepare Preliminary Design Review presentation Understand the basics of using the Makerspace 3D printers and laser cutters 		
5	 Preliminary Design Review + Chassis Deadline Preliminary Design Review Finalized chassis designs Submit custom gusset .DXF files Begin steering subsystem Learn electronics wiring 	 Deliver Preliminary Design Review presentation to peers and instructors Implement feedback into new chassis iteration Submit final .DXF files to Google Form 		

Week 2				
6	 Manufacturing Tutorials Miter saw tutorial Deburring and belt sanding tutorial Drill press tutorial 	 Cut 80/20 tubes to desired length according to team's Solidwork top assembly Debur excess metal from gussets or 80/20 Start assembling chassis with connectors and bolts 		
7	 Motor Testing Finite Element Analysis (FEA) Tutorial: Solidworks Simulation Motor inspection 	 Learn how Finite Element Analysis (FEA) is used to simulate stress, strain, and deformation in parts. Conduct FEA on go-karts Check if motors are running on student go-karts 		
8	 Brake Testing Introduce team merchandise competition Braking subsystem testing 	 Test acceleration and brake systems with weight Use manufacturing skills and machines such as the 3D printer, vinyl cutter, and laser cutter to create the best team merchandise 		
9	Track Designing Work on Critical Design Presentation Drafting track 	 Design a well rounded track for race day, tailored to the strengths of your kart 		
10	 Critical Design Review Critical Design Review presentations Mentor test drive Work on team merchandise 	 Deliver a well justified design presentation using physics and/or simulation results Mentors test drive go-kart 		
Week 3				
11	Test Driving Begin mock course on kart Work on Final Design Presentation 	1. Continue to work on go-kart subsystems		
12	Carbon Fiber Layups Test run day Strength of materials lecture Carbon fiber safety lecture Carbon fiber layup 	 Test go-kart to optimize and improve current designs Analyze pre-made carbon fiber samples Do a carbon fiber layup 		
13	Workday + Carbon Fiber Post Processing - Continue testing - Examine carbon fiber layups	 Test drive go-kart and troubleshoot Work on Final Design Review presentations Post process carbon fiber 		

	and cut sheets	
14	Workday - Continue testing - Instructor go-kart inspection - Work on Final Design Review presentation	 Test drive go-kart and continue to troubleshoot, if needed Complete Final Design Review presentations
15	 Final Presentations and Race Present Final Design Review Race go-karts Present awards 	 Present an optimized go kart design and explain the engineering process throughout the 3 weeks Race go-karts Awards ceremony Course evaluations

• Course attendance is *extremely important*.